First-Principles Investigation of the Interfacial Properties of Boron Nitride

Michigan Tech PhD. Defense

by Kevin Waters
Follow along @ kwaters4.github.io/Presentation/Defense/

Hypothesis

"We can accurately predict the interface between biological molecules and nanomaterials in physiological conditions."

Nanomaterials

Materials with at least one dimension in the sub-micron range.

  • Ratio of surface to bulk atoms changes
  • Bulk properties are not present at this scale
  • Adding one atom changes the properties of the material
  • Large configuration spaces to search
  • Prediction can be utilized, but caution should be practiced

Examples of Nanomaterials

  • Clusters
  • Nanoparticles
  • Fullerenes
  • Nanotubes
  • 2D-Materials
  • A. K. Geim et. al Nature Materials (2007) 6: 183
  • Boron Nitride Nanotubes

    • Predicted in 1994
    • Synthesized in 1995
    • Typically considred a wide band gap semiconductor
    • Parameters to consider
      • Chirality (n,n), (n,0), (n,m)
      • Diameter
      • Layers
    • Excellent chemical and thermal stability

    Boron Nitride Nanotubes

  • Steel, "A Primer on Carbon Nanotubes – Part 1"
  • Difference between Carbon and Boron Nitride Nanomaterials

    • Semi-ionic bonds (B-N) versus covalent (C-C)
    • Interlayer interactions are stronger
    • BNNTs are mostly zig-zag, CNTs statistcally equivalent.
    • All BNNTs are semi-conducting, CNTs vary based on chirality
    • Cytotoxicity still being investigated for BNNTs

    Boron Nitride Nanotubes (Band Gap)

    Rimola et. al. (2013) PCCP 15:13190

    Biological Molecules

    • Carbohydrates
    • DNA (Nucleotides)
    • Lipids
    • Proteins (Amino Acids, Peptides)
    • etc.

    Methods and Tools

    • Solving the system's electronic wavefunction
      • Schrödinger Equation
      • Density Functional Theory (DFT)
      • Ab Initio Molecular Dynamics (AIMD)
      • High Performance Computing Platform

    Amino Acids Adsorbed on Boron Nitride Nanomaterials

    Waters et. al. (2017) ACS Omega 2:76

    Proteins

    pdb : 3V03
    Waters et. al. (2017) ACS Omega 2:76

    Adsorbed Structures

    Binding Energies

    Solvent effects on Boron Nitride using Ab Initio Molecular Dynamics (AIMD)

    Structures of AIMD Simulations

    Monolayer h-BN
    (8,0) Nanotube

    Density Profile Calculation


    Monolayer
    Nanotube

    QM/MM Water Density Profile

    AIMD Water Density Profile

    Future AIMD Work

    • Continue using free-energy methods (PMFs & Metadynamics) to quantify amino acid binding energy
    • Establish useful constraints for the free-energy methods
    • Current limitation is computation time

    Gold Deposition on Boron Nitride Nanomaterials

    Bhandari et. al. (2018) In Preparation

    Gold Quantum Dots on Boron Nitride

    Boron Nitride Nanotubes Functionalized with Gold Quantum Dots

    Gold Flakes on Boron Nitride

    Gold Flakes on Boron Nitride

    Unpublished work from Bhandari et. al.

    Gold Cluster Structures

    2D 3D
  • Unpublished work from Bhandari et. al.
  • L. Xiao et al. (2004) Chemical Physics Letters 392, 452
  • L. Xiao et al. (2006) The Journal of Chemical Physics 114309
  • G. Chen et. al. (2010) The Journal of Chemical Physics 194306
  • Gold Cluster Binding Energy

    Gold Clusters on BN

    Gold/BN Binding Energies

    Gold Cluster Electronic Gap

    Conjugated Gold Cluster Electronic Gap

    Mechanical Properties of 2D BN2

    Waters et. al. (2018) Journal of Physics: Condensed Matter 30: 13

    Experimental Functionalization


    Sainsbury et. al. (2007) JACS 111:12992

    BN Electronic Structure Evolution

    Coverage (%) Band Gap (eV) Binding Energy (eV)
    0 4.25
    16 3.34 -0.74
    25 3.11 -0.70
    50 2.25 0.72

    BN2 Monolayer

    • Supercell : 2B + 4N
    • Symmetry : Amm2 (38)
    • Lattice Vectors
      • a : 6.84
      • b : 2.55
    • Bonds
      • N-N : 1.29
      • N-B : 1.34
      • B-N : 1.50
    • Stability : Phonon Spectra

    BN2 Band Structure (Orbital Projected)

    Hooke's Law / Elastic Tensor


    • σI is the stress tensor
    • CIJ is the elastic tensor
    • ηJ is the stain tensor

    Orthorhombic Symmetry in 2D

    Results


    N/m Graphene1 This Work BN2 This Work
    C11 358.1 353.7 293.2 290.5
    C12 60.4 61.7 66.1 64.4
    C22
    C66 148.9 144.9 113.5 113.1

    Results


    N/m Graphene1 BN2 BN2
    C11 358.1 293.2 368.8
    C12 60.4 66.1 47.2
    C22 153.3
    C66 148.9 113.5 58.7

    Exact-Exchange (Theory Development)

    Bylaska & Waters In Preparation

    Formulation

    Exact-Exchange in Real Space $$ \frac{1}{2} \sum_{\uparrow,\downarrow} \sum^{N^{\sigma}_{occ}}_{n=1} \sum^{N^{\sigma}_{occ}}_{m=1} \int\int_V \frac{\rho^{\sigma}_{nm}(\mathbf{r}) \rho^{\sigma}_{nm}(\mathbf{r})}{|\mathbf{r}-\mathbf{r'}|} d\mathbf{r} d\mathbf{r'} $$

    Exact-Exchange in Reciprocal Space $$ \frac{1}{2\Omega} \sum_{\uparrow,\downarrow}\frac{1}{V_{BZ}^2}\int_{V_{BZ}} d\mathbf{k} \int_{V_{BZ}} d\mathbf{l} \sum^{N^{\sigma}_{occ}}_{n=1} \sum^{N^{\sigma}_{occ}}_{m=1} \sum_{\mathbf{G}} \frac{4\pi}{|\mathbf{G}-\mathbf{k}+\mathbf{l}|^2} \rho^{\sigma}_{m\mathbf{l};n\mathbf{k}}(-\mathbf{G})\rho^{\sigma}_{m\mathbf{k};n\mathbf{l}}(\mathbf{G}) $$

    Filtered Potential $$ V_f{(\mathbf{G})} = \frac{1}{{V_{BZ}}^2} \int\int_{V} \frac{4\pi}{|\mathbf{G}-\mathbf{k}+\mathbf{l}|^2}d\mathbf{k}d\mathbf{l} $$

    Seperation of Singularities (G=0)

    $$ V_f{(\mathbf{G=0})} = \frac{1}{{V_{BZ}}^2} \int\int_{V_{BZ}} \frac{4\pi}{|\mathbf{l}-\mathbf{k}|^2}d\mathbf{k}d\mathbf{l} $$

    $$ = \frac{4\pi}{{V_{BZ}}^2} \int\int_{V_{BZ}} \frac{1 - e^{\alpha|\mathbf{l} - \mathbf{k}|^2}}{|\mathbf{l}-\mathbf{k}|^2}d\mathbf{k}d\mathbf{l} + \int\int_{V_{BZ}} \frac{e^{\alpha|\mathbf{l} - \mathbf{k}|^2}}{|\mathbf{l}-\mathbf{k}|^2}d\mathbf{k}d\mathbf{l} $$

    $$ \approx \frac{4\pi}{{V_{BZ}}^2} \int\int_{V_{BZ}} \frac{1 - e^{\alpha|\mathbf{l} - \mathbf{k}|^2}}{|\mathbf{l}-\mathbf{k}|^2}d\mathbf{k}d\mathbf{l} + \frac{8\pi^2}{V_{BZ}}\sqrt{\frac{\pi}{\alpha}} $$

    Points with Singularities


    E.Bylaska Annual Reports in Computational Chemistry, Volume 13 Chapter 3 (2017)

    Special Points (G=0,1,2,3)

    $$ \lim_{V\to\infty} \int\int_{V_{BZ}} \frac{e^{\alpha|\mathbf{l} - \mathbf{k}|^2}}{|\mathbf{l}-\mathbf{k} + \mathbf{G}_{{i_1},{i_2},{i_3}}|^2}d\mathbf{k}d\mathbf{l} = \begin{cases} \frac{8\pi^{3/2}}{V_{BZ}\alpha^{1/2}} & |i_{1}| + |i_{2}| + |i_{3}| = 0 \\ \frac{\pi^2}{V_{BZ}^{4/3}2\alpha} & |i_{1}| + |i_{2}| + |i_{3}| = 1 \\ \frac{\pi^{3/2}}{V_{BZ}^{5/3}\alpha^{3/2}} & |i_{1}| + |i_{2}| + |i_{3}| = 2 \\ \frac{\pi}{V_{BZ}^{2}\alpha^{2}} & |i_{1}| + |i_{2}| + |i_{3}| = 3 \end{cases} $$

    1/R Potential

    1/R Potential

    1/R Potential

    Next Step

    • Implement intergration technique in NWChem for testing with established material
    • Use methods that require exact-exchange in periodic systems with multiple K-points
    • Compare methods with existing gold standard

    Current/Future Work

    • AIMD studies on the peptide/BNNTs interface in a solvated environment
    • Post-doc Position at the Army Research Laboratory
    • Polymer/material with intergrated theory and experiment

    Challenges

    • Computation power (Hardware/Software)
    • Scaling of theories (CCSD vs. DFT vs. MD)
    • Inclusion of all relevant parameters (ions, solution, pH, etc.)
    • Asking the right questions

    Conclusion

    • Laid the foundation for protein BNNT simulations
    • Started to investigate functionalized structures
    • Building framework for future large scale applications
    • Flexibility to look at similar structures (e.g. Polymers)

    Acknowledgements

    • Ravindra Pandey
    • Eric Bylasksa
    • Gregory Odegard
    • Ranjit Pati
    • Max Seel
    • Wil Slough
    • Loredana Valenzano
    • Yoke Khin Yap
    • Group Members Past and Present

    Questions

    Publications

    • Absorption and Fluorescence Properties of Eight C4 Substituted 7-Aminocoumarins
      Shraddha Singh, Vaho Begoyan, Marina Tanasova, Kevin Waters, Max Seel, Ravindra Pandey
      Journal of Physical Organic Chemistry
    • Dynamics of Self-Assembled Cytosine Nucleobases on Graphene
      Nabanita Saikia, Floyd Johnson, Kevin Waters, Ravindra Pandey
      Nanotechnology
    • Stability, elastic and electronic properties of a novel BN2 sheet with extended hexagons with N-N bonds
      Kevin Waters, Ravindra Pandey
      Journal of Physics: Condensed Matter
    • Hierarchical Self-Assembly of Noncanonical Guanine Nucleobases on Graphene
      Nabanita Saikia, Kevin Waters, Shashi P. Karna, Ravindra Pandey
      ACS Omega, vol. 2. pp. 3457, 2017
    • Amino-Acid-Conjugated Gold Clusters: Interaction of Alanine and Tryptophan with Au8 and Au20
      Marwa H. Abdalmoneam, Kevin Waters, Nabanita Saikia, and Ravindra Pandey
      J. Phys. Chem. C, vol. 121 pp. 25585–25593, 2017
    • Electronic Properties of Acetaminophen Adsorbed on 2D Clusters: A First Principles Density Functional Study
      Ujjal Saikia, Nabanita Saikia, Kevin Waters, Ravindra Pandey, Munima Bora Sahariah
      ChemistrySelect vol. 2 pp. 3613, 2017
    • Amino Acid Analogue-Conjugated BN Nanomaterials in a Solvated Phase : First Principles Study of Topology-Dependent Interactions with a Monolayer and a (5,0) Nanotube
      Kevin Waters, Ravindra Pandey, Shashi P. Karna
      ACS Omega vol. 2, pp. 76−83, 2017
    • Thermoelectric Properties of SnSe Nanoribbons: A Theoretical Aspect
      Kriti Tyagi, Kevin Waters, Gaoxue Wang, D. Haranath, Bhasker Gahtori, Ravindra Pandey
      Materials Research Express, vol. 3 pp. 35013, 2016
    • A Theoretical Study of Structural and Electronic Properties of Alkaline-Earth Fluoride Clusters
      Ratnesh Pandey, Kevin Waters, Sandeep Nigam, Haiying He, Subhash Pingle, Avinash Pandey, Ravindra Pandey
      Computation and Theoretical Chemistry, vol. 1043, pp. 24–30, 2014