PH4390 Computational Methods in Physics

Assignment 01: Error Analysis Fall 2017

Problem 1

In SI units the Bohr radius is given by the following:

$$a_o = \frac{4\pi\epsilon_o\hbar^2}{m_e e^2}$$

Use the following values:

Permitivity of Free Space: $\epsilon_o = 8.85 * 10^{-12} Fm^{-1}$ Reduced Planck Constant: $\hbar = 1.05 * 10^{-34} Js$

Electron Mass: $m_e = 9.11 * 10^{-31} kg$ Elementary Charge: $e = 1.60 * 10^{-19} C$

 π : 3.14 or M_PI from (math.h)

Coding

Using single and double precision calculate the Bohr radius. Calculate the numerator and denominator separately and calculate the Bohr radius all at once. A suggested output scheme is given below.

Bohr radius calculation in two parts: Bohr radius calculation in two parts: _____ _____ Single Precision top Double Precision top : # Single Precision bottom: # Double Precision bottom : # Single Precision Double Precision : # m Bohr radius calculation in one part: Bohr radius calculation in one part: Single Precision : # m Double Precision : # m

Question(s)

1. Which of the four methods for calculating the Bohr radius worked best, explain. Which method did not work, explain.